
Analysis of Pegasos Algorithm

Wenxuan Zhou

1 Introduction

Support Vector Machine (SVM) is a supervised classification model. Given a
set of labeled examples, the goal of SVM is to divide them by a gap which is as
wide as possible.
Formally, consider a concept learning problem

(
X = Rd, Y = {±1},P,F

)
, where

P is a set of probability distributions on Z = Rd × {±1}, F is the set of all
half-space classifiers of the form fw(x) = 〈w, x〉, the loss function is defined as
lw(x, y) =

(
1− y〈w, x〉

)
+

. The soft-margin SVM is a minimizer of

g(w,Zn) =
1

n

n∑
i=1

li +
λ

2
||w||2 (1)

An alternative form is

g(w,Zn) =
1

n

n∑
i=1

ξi +
λ

2
||w||2 (2)

s.t. yi〈w, xi〉 ≥ 1− ξi
ξi ≥ 0 , ∀i

The classical methods of solving SVM is to convert it to a quadratic program-
ming problem, but this kind of methods is usually very slow and cannot be used
in large dataset. Pegasos is a popular SVM solving algorithm, one important
property is the testing error is invariant w.r.t. the data size. In this report,
we’ll show and prove the error bound of Pegasos.

2 Algorithm

Pegasos is an online learning algorithm for SVM. It performs stochastic gradient
algorithm on objective Eq. (1). The algorithm initializes w1 = 0. Then on the
ith iteration, first choose a random example (xit , yit), then update the weight
based on the sub-gradient

∇t = λwt − 1{yit 〈wt,xit 〉<1}yitxit (3)

After T iterations, output wT+1 as the result.

1

Algorithm 1 Pegasos

Input: S, λ, T
Set w1 = 0
for t = 1, 2, . . . , T do

Choose it ∈ {1, . . . , |S|} uniformly at random.
Set ηt = 1

λt
if yit〈wt, xit〉 < 1 then
wt+1 = (1− ηtλ)wt + ηtyitxit

else
wt+1 = (1− ηtλ)wt

end if
end for

Output: wT+1

3 Performance Analysis

Consider f : S × Z → [0, B], define fz(w) = f(w, z). Assume fz is L-Lipschitz
and λ-strongly convex. Let L(w) = Ez[f(w, z)]. Define

RT =

T∑
i=1

f(wt, Zt)−
T∑
t=1

f(w∗;Zt)

DT =

T∑
i=1

(L(wt)− L(w∗))

ξt = L(wt)− L(w∗)− (f(wt;Zt)− f(w∗;Zt)) (4)

Lemma 3.1. Let ξt be the random sequence defined in Eq. (5). Then

V ar[ξt] ≤
2L2

λ
(L(wt)− L(w∗)).

Proof.

V ar[ξt] ≤ E[(f(wt;Zt)− f(w∗;Zt))
2]

≤ E[L2||wt − w∗||2]

= L2||wt − w∗||2 (5)

Because fz(w) is λ strongly-convex

fz(wt) ≥ fz(w
∗
t) +

λ

2
||wt − w∗t ||2

fz(w
∗) ≥ fz(w

∗
t) +

λ

2
||w∗ − w∗t ||2

2

Then

fz(w
∗) + fz(wt) ≥

λ

2
||wt − w∗t ||2

L(w∗) + L(wt) ≥
λ

2
||wt − w∗t ||2 (6)

Combining Eq. (6) and (7) derives the result.

Lemma 3.2. Suppose X1, . . . , XT is a martingale difference sequence with
|Xt| ≤ b. Let

V artXt = V ar(Xt|X1, . . . , Xt−1).

Let σ =
√∑T

t=1 V artXt. Then we have, for any δ < 1
e and T ≥ 3,

Prob

(T∑
t=1

Xt > max

{
2σ, 3b

√
ln(

1

δ
)

})
≤ 4ln(T)δ

This lemma is an inference from Freedman’s inequality. Then we have the
following theorem.

Theorem 3.3. With probability at least 1− 4ln(T)δ.

DT

T
≤ RT

T
+ 2

√
2L2ln(1

δ)

λ

√
RT
T

+max

{
8L2

λ
, 6B

}
ln(1

δ)

T

Proof. By Lemma 2.1, we have σ ≤
√

2L2

λ DT . |ξt| ≤ 2B. Then by Lemma 2.2,

with probability 1− 4ln(T)δ,

T∑
t=1

ξi ≤ max

{
2σ, 6B

√
ln(

1

δ
)

}√
ln(

1

δ
).

Therefore, with probability 1− 4ln(T)δ

DT −RT ≤ max

{
2

√
2L2

λ
DT , 6B

√
ln(

1

δ
)

}√
ln(

1

δ
).

Solving for DT derives the result.

Theorem 3.4. If a projected gradient descent algorithm on f runs with step
size at = 1

λt for t ≥ 1, then

RT ((ft)) ≤
L2(1 + logT)

2λ

3

Lemma 3.5. Assume ||x||2 ≤ R. Let vt = 1{yt〈wt,xt〉<1}ytxt, then

wt+1 = − 1

λt

t∑
i=1

vi

||wt+1|| ≤
R

λ

From Lemme 2.5, we can know ||∇t|| ≤ 2R. So the object function g(w;Zn)

is λ-strongly convex and 2R-Lipschitz, the upper bound is B = 3R2

2λ + 1. So we
have the following theorem.

Theorem 3.6 (The Generalization Bound for Pegasos Algorithm). For the
sequence w1, . . . , wn generated by the Pegasos Algorithm, with probability at least
1− 4ln(T)δ,

DT

T
≤ 2R2(1 + lnT)

λT
+ 8R2

√
1 + lnT

λT

√
ln(

1

δ
) +max

{
32R2

λ
,

9R2

λ
+ 6

}
ln(1

δ)

T

Corollary 3.6.1. Assume R = 1. For λ small enough, with probability at least
1− δ,

DT

T
= O(

ln(Tδ)

λT
)

Corollary 3.6.2 (Extension from Jensen’s inequality). Assume R = 1. Let

w̄ = 1
T

∑T
i=1 wi. For λ small enough, with probability at least 1− δ,

L(w̄)− L(w∗) = O(
ln(Tδ)

λT
)

Corollary 3.6.3 (Extension from Markov’s inequality). Assume R = 1 If t is
randomly selected from [T]. For λ small enough, with probability at least 1

2 ,

L(wt)− L(w∗) = O(
ln(Tδ)

λT
)

Remark. The corollary implies that if we run the Pegasos Algorithm at stop at
a random position, with probability at least 1

2 , the generalization error will be
small.

The above bounds are irrelevant with the data size n. So for Pegasos Algorithm,
the number of iterations needed does not scale with the data size.
Because L(wt) is up-bounded, we have the following theorem.

Theorem 3.7. Assume R = 1 and λ is small enough, then

E[
DT

T
] = O(

lnT

λT
)

4

4 Experiment

In this section we’ll check the generalization ability of Pegasos on nearly linearly
separable data. The data is generated by a Gaussian distribution and the noise
rate is 10%. The result is shown is the following graph.

From the graph, we can see the generalization error is invariant with the data
size. And the error is inverse proportional to the number of iterations. When
the number of iterations is 100, the algorithm achieves the optimal performance,
which is very efficient.

5 Conclusion

In this report we prove and examine the error bound of Pegasos algorithm is
O(lnTλT) with probability at least 1

2 . In practice it almost ensures a low error,
which needs further study to give a tighter bound.

References

[1] Shalev-Shwartz, Shai, Yoram Singer, and Nathan Srebro. “Pegasos: Primal
estimated sub-gradient solver for svm.” Proceedings of the 24th international
conference on Machine learning. ACM, 2007.

[2] Kakade, Sham M., and Ambuj Tewari. ”On the generalization ability of
online strongly convex programming algorithms.” Advances in Neural Infor-
mation Processing Systems. 2009.

5

[3] Shalev-Shwartz, Shai, and Nathan Srebro. ”SVM optimization: inverse de-
pendence on training set size.” Proceedings of the 25th international confer-
ence on Machine learning. ACM, 2008.

6

